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A new, unified approach to recent end point estimates for the maximal operator
of partial sums of Fourier series is obtained through the use of extrapolation
theory. The method involves characterizing certain extrapolation spaces associated
with scales of Lorentz-Zygmund spaces.  « 1995 Academic Press, Inc.

1. INTRODUCTION

A natural problem in classical harmonic analysis is to describe the class
of functions C with a.e. convergent Fourier series. The celebrated results
of Carleson and Hunt (cf. [5], [7]) show that LXT)c C, p > |. These
results were further sharpened by Carleson and Sjélin {13] and more
recently by Sjélin [14] and Soria [15, 16] to include certain classes of Orlicz
spaces close to L'. These refinements are based in extensions of the
extrapolation theorem of Yano to operators of weak type and then applied
to the Carleson-Hunt estimates for the maximal operator S(f) =
sup,|1S5,(f)], where S,(f) denotes the partial sum of the Fourier series of
f. A somewhat related extrapolation method is proposed by Taibleson and
Weiss through the use of “Block spaces” (cf. [18]), which, in particular,
allows to add weak type (1, 1) estimates.

In this paper we present a new and unified approach to these results
through the use of the recently developed theory of extrapolation spaces
(cf. [8]). In particular we show that the results of [16] can be extrapolated
from the estimates of [14]. In turn the estimates of [14] can be extrapolated
from the classical estimates of Carleson—-Hunt. This is accomplished
through the identification of certain extrapolation spaces associated with
Lorentz—-Zygmund spaces. Given the potential applicability of these re-
sults, we also give a general method to identify relevant extrapolation
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a.e. CONVERGENT FOURIER SERIES 11

spaces for arbitrary scales of spaces. For other applications of extrapola-
tion theory to problems in Fourier analysis and Approximation theory, we
refer to [8, 9]. We also note that calculations of extrapolation spaces
similar to those presented in Section 7 are useful in the theory of
logarithmic Sobolev inequalities (cf. [11]).

The paper is organized as follows. In Section 2 we give some back-
ground on extrapolation theory and identify certain extrapolation spaces
associated with the L(Log L)? spaces, which we then use in Sections 4 and
5 to give proofs of the estimates for the maximal operator of Fourier sums
described in Section 3. The last two sections, which could be skipped by a
reader only interested in the estimates for the maximal operator of partial
sums of Fourier series, deal with some theoretical questions that arise
from our development. In Section 6 we compare the extrapolation results
with some classical interpolation theorems, and in Section 7 we extend the
calculations of Section 2 to arbitrary scales of spaces and relate them to
generalized “reiteration theorems” for extrapolation spaces.

2. EXTRAPOLATION THEORY

In this section we give a brief review of the basic background on
extrapolation theory and refer to [8] for a detailed account as well as
complete bibliography.

The point of departure of extrapolation theory is the extrapolation
theorem of Yano [19] which can be described as follows. Suppose that T is
a bounded linear operator on L”(0,1) for p > 1 with ([Tl ror =
((p— 1)), as p — 1, for some «a > 0; then these estimates can be
extrapolated to

T: L(Log L)" - L'.

There is also a dual statement for operators T acting on L7(0,1) for p
close to =, with |T|l;»_,r = (p®), as p — =, for some a > (; then T:
1* - Exp L'/*. The theory seeks to extend these basic L” results to
general scales of spaces. More generally, extrapolation theory aims to
provide general methods to study limiting spaces and estimates in analysis.

Following [8], it is convenient to normalize the real methods of interpo-
lation (.,.)y .. x and (..), ,., so that they become exact interpolation
functors of order 6. This is achieved by multiplying the usual norms by
suitable constants. For example, the normalized /‘Tn,q;K norm is given by
Ifll4,, = {1 = 8)8g[5(t~°K(z, f; Ai(de/D)} /9.

A basic result is contained in the following corollary of [8].
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Tueorem 1. (i) Let {Agyc o1, be an ordered family of Banach spaces
(i.e. there exists A, and A, such that A, C A, C A,, and moreover if
8, <8, then with norm one A, C Ay ), let X be a Banach space (or a
quasi-Banach space with || - | x satisfying the triangle inequality), and let T
be an operator T: Ay — X, with norm = (0 *) as 6 = 0, a > 0, then

T: ¥ {04, - X,
ae(0, 1)

where

Y {04,

g<(0, 1)

= {a: a= Y a,(in Ay),a,€A4,,and Y. 6 “la,ll4, < oo}
Fe, 1) ge0, 1)

lalls: (9’"44,,)=inf{ Y o llalaa= Y a,,}.

G (D 1)
8<(0,1) #e(,1)

(i1) Suppose that the spaces A, are obtained by interpolation from a pair
of mutually closed spaces (A, A,) by the complex method or by the real
method. Then, we have

Z {eA"AB} = A(rx);K
0<(0,1)

. _ 1 u—ldt
= a:HaH(M;K=j;)K(t,a;A) 10g7 - < ).

(iii) If we are dealing with lattices, (i) holds for quasilinear operators.

Let us note that if {A4,} is an ordered scale (i.e., A, CA, , if 8, > 6,),
then to compute the spaces L {6 %4} it is enough to consider sequences
of the form 8, = 27", v € N. In other words we have

T (0, = ¥ (205w

v=1

Indeed, let a € ¥, {07 °4,}, then there exists a representation of a =
Ly_ia,, with a, € A, , and such that |ially _ RO 2516, llag lla,.
Foreach p =2,3,..., let £, ={6,€27#,27#**")}, and E=16,/6, ¢
UE,). Let by-u=X.ap, n=23,..., and b,-1 = L a,, then a =

2 _1by-u. The first term is easily estimated using the triangle inequality
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and the ordering of the scale:

27by il v < e 00 May o < e 20, Nlay N, < ¢ 26, lay N,
E E

=1

Similarly,
x 3 % —log @ +1
Y 24ty e < X 250 Ny e = X lag s, Y 20
w1 w1 E, v=1 = —logh,
<20 % 0 la ly,.
=1
as desired.

Let us also note that the same argument shows that, if {4,},_ |, is an
ordered scale, then V8, € (0, 1), with norm cquivalence,

Yoforda) = X {674,).

0e(0,0,) s, 1)

We consider in detail some examples important for our purposes here.
For a concave function ¢: [0,1) = R, ¢(0) =0, let A0, 1) be the
Lorentz space defined by the norm

M, = j;'lf*(s) de(s).

For a pair of Lorentz spaces A

1... the K functional is computed in
[10] )

e

K(t,f54,,A4,,) = f”lf*(s)dmin{xp,(s),tqu(s)}. (1)

Using (1), we get

dt

||fn("~;1,“¢3)(a)<k' = f“](log 1/’)(1*I j(‘)lf*(s)d min{e,(s), to,(s)}—

P

For example, if ¢,(s) =5, and ¢,(s) = 1, s # 0, ¢,(0) = 0, then A, =
L', and A,, =L" In this case (1) gives the well known formula
K(t, f; L', L) = tf **(¢), and we obtain (cf. [8])

Y A{(p = 1) "L(T)} = (L', L")k = L(Log L)(T).

p>1

640,80/1-2
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In our application to Fourier scrics we need to explicitly compute some
extrapolation spaces associated with Lorentz spaces.

Turorem 2. Y00 'L(Log L)' *™(T)} = L Log L(Log Log LXT).

Proof. In our calculation it is important to represent the spaces
L(Log L)'"*(T) as interpolation spaces and we need to be careful about
the constants appearing in the equivalences of the norms involved. There-
fore, we shall first give a detailed proof of the known fact that

L(Log L)' "(T) = [L Log L(T), L(Log L)(T)],  (2)

with norm cquivalence independent of 8. Note that the spaces
L(Log L)A(T), B € [0, 2], have absolutely continuous norms. Then, isomet-
rically (cf. (2, p. 125])

[ L Log L(T). L(Log L)(T)],
= [Lrog L(1)]' *[LiLog LYY()]', 60,1, (3)

To compute the spaces appearing on the right hand side of (3) we use
another technique of Calderdn [2]). First observe that, since we are dealing
with spaces on a finite measure space, only large values of the Young’s
functions involved are important. In our case we shall take x > e“. Using
Calderén’s notation, we write L{lLog L)? = Ag‘(L‘), where Ag(x) =
x(log x)?, B € [0, 2], for x > e“. Although the precise value of A[;‘ is not
readily available, we have that ¢4(x) = x(log x) "8 is equivalent to the
inverse for large x. More precisely, an elementary computation shows that

< @a(Ay(x)) <x,  forx e, B e[0,2]. (4)

O =

Then, according to [2, p. 166], we have, with norm equivalence indepen-
dent of 69,

ég (L") = (A7) (A5 (L)’
~[LLogL] *[L(Log L)}, 6e(0.1]  (5)
where

¢ '(x) = (A7) ()47 () (6)
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Thercfore, combining (6) and (4), we obtain, for large values of x,
0 N N
dy'(x) = (x(logx) ') (x(logx) )
=x(logx) " 6e[0,1]. (7

Consequently, combining (7) with (5) and then with (4) once again, we
obtain (2).
Thus, by Theorem 1 (ii)

L {0 'L(Log 1)"""(T)} = (L Log L, L(Log L))«

. d
= {f/f“‘K(t,f; LLog L, L(Log L)~)Tt < oo}

Since the spaces L Log L. and L(Log L)’ arc Lorentz spaces the K
functional can be computed using (1) and we get

K(r.f:LLog L, L(Log L)*)

=~ -/[’)‘f*(s)d min{f‘:(l + log 5) du,tf(:

It follows that for t < e~ !,

u

] 2
1+ log—] du}

K(r,f:L Log L, L(Log L))

= =3/t 1
:fe f*(s)(l+l0g—)ds
0 N

112
1+log~—] ds
s

+zf:" £*(s)

{1 =301

Integrating with respect to dt /¢t yields

e 1 1
“f“(l, Log L. L(Log 1)), x =~ j;) f*(s)(l + lOg ;)(log(log ;)) ds,

from which it follows that
”f”([ log L, IL(Log I,)z)(,L s = ”f”L Log L(Log(Log 1))

as desired.

Remark. For a general version of Theorem 2, see the Example at the
end of Section 7.
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3. A Review or ESTIMATES FOR THE MAxIMAL OPERATOR

We shall present an extrapolation approach to results associated with
the maximal operator on partial sums of Fourier series. Therefore, we
start by presenting a brief summary of the results under consideration.
The fundamental results in this area are duc to Carleson {5} and Hunt {7].

TreorEM 3. Let S(f) = sup,|S,(f), where S,{f) denotes the nth
partial sum of the Fourier series of f, 1 < p < =, then for every f of the
form, f=gx,.., with 27" < g < 1, we have

supt "/ P(SF)*(r) < c Ifllp.

>0

where ¢, = O(1/(p — ).

Using Theorem 3, the fact that L7=(T) c L\(T) with norm O(1/(p —
1) as p — 1, with the extrapolation theorem of Yano, allows Hunt to
conclude (cf. [7])

TheoreM 4. S: L({Log)(T) — LKT).

Carleson and Sjolin (cf. [13]), C. P. Calderdn {4], and Soria [15] improve
on Theorem 4 by extrapolating without using the embedding of weak L7
into L' which worsens the constants by a factor of (p — 1)”!. The point
apparently is that although Minkowski’s inequality fails for |} - ||,1~, weak
L' estimates can be added in the sense that (cf. [17, 3])

Zcifi
i=1

= C”{Ci} H/I()g waoysupll fill o=
[AR ieEN

These authors combine all this with the embedding of weak L”(T) into
weak LY(T) to prove (cf. [15])

Tueorem 5. If f € L Log L(Log Log LXT) then Sf € L*X(T).

Remark. In [8], an abstract form of Theorem 5 is given through the
introduction of a modified version of the ¥ extrapolation functor.

Sy6lin [14] extends Theorem 4 as follows.

TheOrREM 6. If f€ L(Log L)' **(T) then Sf € L{Log L) (T), 0 <
9 <1
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In fact, a perusal of the constants in the proof shows that

1+46
dr,

(8)

fTSf(t)(l + log*Sf(1)))" " dr < Co"[rmr)I(l +log*| £(1)])

where C is a constant independent of 6.
Note that the end point 8 = [, corresponds to Theorem 4. Finally, the
most recent result along these lines is proved in [16]

Tueorem 7. If f € L Log I(Log Log LXT) then Sf € L(Log L) (T).

4, EXTRAPOLATION METHODS

We now give a systematic approach to the results described in Section 3.
In this section we show that Theorem 7 follows by extrapolation from (8).
Then in Section 5 we show that in fact Theorem 6 can be extrapolated
from Theorem 3.

We collect a number of auxiliary facts needed in the proof of Theorem
7. First we observe that

L(Log L)’ '(T) c L(Log L) (T).

In fact, we have

fy_lf(t)l[l + log* lf(r)(]*"dfsﬁ_tf(r)([l +log* [f()]" " dr (9)

We also need to quantify the rclationship between different ways of
measuring the size of a function in the L(Log L)Y*(T) spaces.

Lemma 1. For 8 € (0,1/2), let 1,(f) =11 f 11 qog ey = Jof =01 +
log(1/tN' "% dt. We hare

fultfml[l +log* [f()I]' " dr < el f)
where

L(f), if L (f) <1,

L(f)y =4 [1tNH) , 10
(f) [ (Hf)]* 1) > 1 (10)

and c is a constant independent of 8.
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Proof. We may suppose that {, = /,(f) < «. Using the readily verified
estimate f*(r) < /,t~ !, we obtain

j(‘)l‘f(f){[l + log™ U‘{t)”tuld[

= FHO + log™ f*(0)])' " ar
(frr<iy Y

I+6

/
1+log*7“ dr. (11)

Sf“]f*(t)

Suppose now that I, < 1. Estimating the function [1 + log* (/,))/0)]' "¢
separately in (0,/,) and (/,, 1) we sce that the right-hand side of (11) is
bounded by 4 /,. On the other hand, if /, > 1,

[ 1+6
f()lf*(t) I + log* —t‘i dr < (1+logl,)' ™1,
Now, since log/, < 8 18 and I, > 1, 8 € (0, 1/2), we have
P 1+8
(1+1logl) ™, < |1+ -(-;i <)L <cl2o 0,

The desired result follows since 8 € (0,1/2), and 0 ° is bounded as
g — 0.

We are now ready for the

Proof of Theorem 7. From (8), (9), and Lemma 1, we have,

S: L(Log L)' "*(T)y - L(Log L) '(T),
with
JISFCO[T + tog™ ISF(e)I] " dr < c07'T(f) (12)
,
as 8 — 0, and where I,(f) is defined in (10).
Observe that the functional
f=100) = [I1ol[t+ 1o lf()] ' a (13)

is subadditive on positive functions, and that § is a positive subadditive
operator. If a norm e¢stimate were available instead of (8) we could
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extrapolate directly. However, in the situation at hand we need an extra
argument to overcome the nonlinecarity of the estimate.

Letfe Ly, 10 'Llog L)' " T) = Tocoa20 'L(Log L)' T4(T).
Consider a nearly optimal decomposition f=¥,_ ,f, such that

”f”z_‘,,(a Lo 1y Py = Z 97l”ff,”L(Lug/.)‘*"(‘1‘)-
8<1/2

Associated with this decomposition we define the sets £ = {68 = (0, 1/2);
”f(;HL(Lng Iy < 1}, F = {8 € (0, 1/2)1 ”fH”L(l_ng I ey > 1}, and let

f=f+f, with f, = Zfe«flz fo)

gel el

Applying the functional / defined in (13) to §f, taking into account that
Sf < Sf, + Sf,, gives

I(Sf) < 1(Sfy) +1(Sf)).
We now estimate each of these terms separately. By subadditivity,

I(Sfa) < 22 1(Sfy)

:X=¥ A

=c Z B‘lrﬂ(fo) (by (12))
dels

<c Y 07 ' (f) (by the definitions of E and I')
ok

<c Z 971||fg”1,(Log LWy = Hf”\_‘“w Ulog 1) -

80, 1/2)

Similarly, since the functional f — [/(f)]'/* is also subadditive on positive
functions, we obtain

(1) < e X [Hsfn]
fer
sc Y o2 (by (12)
e F
<c E 071/2071/2||f0“1‘(L0g Iy (bY(IO))
el

- -
<c Z 0 “fy”L(l.ng Ly = ”f“}_,, (0 L{Log 1.3 Ty
8e(0,1/2)
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Consequently,

2
I(Sf) < (‘{“f“x,,w vatoe 0 4y (e Teioe 00 %) >,

as we wished to show.

5. DivisiON OF INEQUALITIES

In this section we wish to point out the connection between what in [8]
is described as the principle of “division of inequalities” and the estimates
of Theorem 6 and Theorem 3. We shall be brief and refer the reader to [8]
for more details.

Let us recall the relevant results from [8, ¢f. Cor. 3.14]. Let 4 and B be
mutually closed Banach pairs, let g(8) be an extended real valued function
with | < q(8) < =, and let M(8), N(8), be a tempered functions (i.e.,
M(0) = M(28) as 6 — (). Then, for an operator T, the following are
equivalent:

(i) T: A, ., = B, .., with norm ¢cM(8), Vo € (0, 1);
(i) T: Zt'NOMO) A, . x) = Lolt *N@OIB, . k)

The point is that we can divide our estimates by a suitable function
N(8) before applying the ¥ functor and we can choose the function N(8)
as we wish. Applying this result to Theorem 3, with L(p, =) =
(LY 1), ek M(8) =077 N(8)=96"#"" B e (0,1, and taking into
account that

1
Wfllcer 1oy = SUPEY/ P4 (0) < — suptV/Pf*(e),
>0 t>0

gives (cf. [8, Example 3.15, p. 32, second formula from the top])

1\# d 1
fnl(log;) s(Sf)**(s)—si scf”'(mg;)

Integrating by parts, we recover Theorem 6. Thus Theorem 6 follows from
Theorem 3.

For completencss sake we remark that with small changes the argu-
ments given here to deal with weak type estimates decaying like 6 ' could
be used to deal with other types of decay, e.g., like 8 ™« (cf. [15]).

B+2 ds
P (s)—.
¢ N
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6. EXTRAPOLATION VS INTERPOLATION

It is instructive to compare the results obtained with classical interpola-
tion theorems. As we have seen, for suitable scales, extrapolation spaces
can be characterized as limiting interpolation spaces. We now consider
brietly the (interpolation like) application of the interpolation functors that
appear in extrapolation theory. In what follows we work with func-
tion spaces based on a finite measure space. In [20], Zygmund shows
that if T is a quasilinear operator of weak types (1, 1), and (2,2) then T
L(Log L) — L{Log LY ™', 0 <8 < 1 (cf. [6] for a proof of this result
using the (...), x method). Interpolation theorcms of a similar nature
were obtained by O'Neil [12]. For example, in [12] it is shown that

THEOREM 8. Let T be a sublinear operator of weak types (1, p).(q, r),
with 0 <p<r<w1<q<ow Then T: L{Log L) - L""? (<@ < 1.

We illustrate our point giving here a proof of Theorem 8 using the
(.;.)1). x method. In particular, our approach, which should be compared
with [20, 12, and 1], can be used transform this result, and others like it,
into general real interpolation theorems.

Proof of Theorem 8. Applying the (.;.),;, x mecthod, we have
T (LY L)k = (L7 L vk
However,
(L', LYk = (LY L)k = L Log L
and (cf. [6] for a similar calculation with p = 1)
(L"7 L7 )k = (L5, L) g € L7

Thus, T: L Log L — L. Interpolating this result once again with T:
L' — L77”, we get

T: (L', L(Log L)), ,.x =~ (L"7, L"),
The result follows from the known characterizations
(L'.L(Log L)), . x = L(Log L)* (L™= L"), | x C L™,

Remark. For the maximal operator of partial Fourter sums weak type
(1, 1) 1s, of course, not available, and extrapolation was used to single out
the right domain space required to arrive to the desired target space. We
also point out that the interpolation thecorems for Lorentz-Zygmund
spaces presented in [1] can be extended in this fashion.
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7. GENERALIZED REITERATION THEOREMS

We now extend the results obtained in Section 2. In fact, we show that
the concrete calculations of Section 2, for Lorentz—Zygmund spaces, are
special cases of rather general results for interpolation (extrapolation)
scales of spaces. The unifying theme is that of “reiteration.”

Let us recall some results from [6]. Let A be an ordered pair of Banach
spaces, i.e., A, 2 A,, then it is shown in [6] that

K(t. Fi A (Ag Ay k) = r/' K(u.f5 A)du/u (14)
and
K(1 S (A Ak A1) = [ 'K{minfe™ (1)) f: ) du/u, (15)

where ¢(r) = t logle/1).
Integrating 15 in (0, 1) with respect to dt/t and changing the order of
integration yields

THeoREM 9. (A, A D, k. AD gk = (A Ay k-
We are now ready to prove the following extension of Theorem 2.

Theorem 10,

((A()* Al)\\):l\"(A()* Al)(l):f\')(l);K

1 _ 1
= {fe (A()’Al)ll):K/];)K(s’f; A)[log+(log )

s

ds

— < >,

s

Proof. The proof is by “ping-pong” iteration. In fact, successively

applying Theorem 9, (14), and (15) (applied to B, = (A,, A\),,. x: B, =
(B, A1), k) we get

K(t, £ ( Ay Ak (Ao A riv)
= K(!,f:(A(,, ANy k- ((Aos AD . ks Al)m;k)

! du
rf MK(u,f;(A(,.A,)“M,AI)T

i

A)

ds du

s U

i

1 1 . B i
I'/; I’l‘/(‘)K(mm{(,o "u),s}, f;
Therefore,

. 1,1 1 . B _ ds du
ANt 0, w400 00,0 = f(,f mf(, K(min{e™ (), s} /3 A) =< dr,
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which in turn is equivalent to the sum of two integrals,

=(I)+ (1), say.
Now
1 du
¢ ()

i e 1\ "' du
[(,a (u)l()g(pgl(u)”log;) "

A) ](log 1/u) " du

1 -1
(Iog ;—(7)—) o' (u) du

(1) = f()‘f"ﬁ K¢ '(w), f5 A)log

] K(e '(u), f; 4)

¢ )
-[1F

¢ '), f:
-/;

<p"'(ll)
< (‘”f”(A“, Ak

qu

On the other hand,

du ds
1 L/Gog(l /1))
I) = A {t— —
( ) '/(- ( f )‘/;*(.\')'/(') “ u s
1 du ds
=K —_—— —
f (s «[w(‘)log(l/u) u s

1
</ s, [ A Jlog* (log @(s))d
= fo]K(s,f, Z)log*(log*(log —:—)) ds

+f fAlog (log l)ds

and the desired result follows.

One should view Theorem 10 as an abstract version of Theorem 2. This
is developed in detail in the following example.
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Exampre.  Consider the pair A = (L'(T), LXT)). Then, A, x =

L Log L(T), Ay, = L(Log L)XT), and by Theorem 10, (A, 4,
Aoy k)i x = L Log L Log Log L(T). Combining this calculation with
L(Log L{TN'*? = [ A, x- Ay kls (see (2)) and Theorem 1 (i), we obtain
Theorem 2.

5]

10.

1.
12.
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